Search

Machine Learning 101 : Introduction to Machine Learning [Free Online Course] - TechCracked

Machine Learning 101 : Introduction to Machine Learning

Introductory Machine Learning course covering theory, algorithms and applications.

This course includes
  • 25.5 hours on-demand video
  • 12 articles
  • 39 downloadable resources
  • Full lifetime access
  • Access on mobile and TV
  • Assignments


What you'll learn
  • The Learning Problem
  • Learning from Data
  • Is Learning Feasible?
  • The Linear Model
  • Error and Noise
  • Training versus Testing
  • Theory of Generalization
  • The VC Dimension
  • Bias-Variance Tradeoff
  • Neural Networks
  • Overfitting
  • Regularization
  • Validation
  • Support Vector Machines
  • Kernel Methods
  • Radial Basis Functions
  • Three Learning Principles
  • Epilogue
  • What is learning?
  • Can a machine learn?
  • Identify basic theoretical principles, algorithms, and applications of Machine Learning
  • Elaborate on the connections between theory and practice in Machine Learning
  • Master the mathematical and heuristic aspects of Machine Learning and their applications to real world situations


Description

Introduction to Machine Learning

Machine Learning 101 : Introduction to Machine Learning

Introductory Machine Learning course covering theory, algorithms and applications.

This is an introductory course in machine learning (ML) that covers the basic theory, algorithms, and applications. ML is a key technology in Big Data, and in many financial, medical, commercial, and scientific applications. It enables computational systems to adaptively improve their performance with experience accumulated from the observed data. ML has become one of the hottest fields of study today, taken up by undergraduate and graduate students from 15 different majors. This course balances theory and practice, and covers the mathematical as well as the heuristic aspects. The lectures below follow each other in a story-like fashion:

  • What is learning?
  • Can a machine learn?
  • How to do it?
  • How to do it well?


Take-home lessons.


Outline of this Course;

  • Lecture 1: The Learning Problem
  • Lecture 2: Is Learning Feasible?
  • Lecture 3: The Linear Model I
  • Lecture 4: Error and Noise
  • Lecture 5: Training versus Testing
  • Lecture 6: Theory of Generalization
  • Lecture 7: The VC Dimension
  • Lecture 8: Bias-Variance Tradeoff
  • Lecture 9: The Linear Model II
  • Lecture 10: Neural Networks
  • Lecture 11: Overfitting
  • Lecture 12: Regularization
  • Lecture 13: Validation
  • Lecture 14: Support Vector Machines
  • Lecture 15: Kernel Methods
  • Lecture 16: Radial Basis Functions
  • Lecture 17: Three Learning Principles
  • Lecture 18: Epilogue


This course has some videos on youtube that has Creative Commen Licence (CC).

Enroll Now

Post a comment

0 Comments